The eutT gene of Salmonella enterica Encodes an oxygen-labile, metal-containing ATP:corrinoid adenosyltransferase enzyme.

نویسندگان

  • Nicole R Buan
  • Sang-Jin Suh
  • Jorge C Escalante-Semerena
چکیده

The eutT gene of Salmonella enterica was cloned and overexpressed, and the function of its product was established in vivo and in vitro. The EutT protein has an oxygen-labile, metal-containing ATP:co(I)rrinoid adenosyltransferase activity associated with it. Functional redundancy between EutT and the housekeeping ATP:co(I)rrinoid adenosyltransferase CobA enzyme was demonstrated through phenotypic analyses of mutant strains. Lack of CobA and EutT blocked ethanolamine utilization. EutT was necessary and sufficient for growth of an S. enterica cobA eutT strain on ethanolamine as a carbon and energy or nitrogen source. A eutT+ gene provided in trans corrected the adenosylcobalamin-dependent transcription of a eut-lacZ operon fusion in a cobA strain. Cell extracts enriched for EutT protein contained strong, readily detectable ATP:co(I)rrinoid adenosyltransferase activity. The activity was only detected in extracts maintained under anoxic conditions, with complete loss of activity upon exposure to air or treatment with the Fe2+ ion chelator bathophenanthroline. While the involvement of another metal ion cannot be ruled out, the observed sensitivity to air and bathophenanthroline suggests involvement of Fe2+. We propose that the EutT protein is a unique metal-containing ATP:co(I)rrinoid adenosyltransferase. It is unclear whether the metal ion plays a structural or catalytic role.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

the Eutt enzyme of Salmonella enterica is a unique ATP:Cob(I)alamin adenosyltransferase metalloprotein that requires ferrous ions for maximal activity.

ATP:co(I)rrinoid adenosyltransferase (ACAT) enzymes convert vitamin B12 to coenzyme B12. EutT is the least understood ACAT. We report the purification of EutT to homogeneity and show that, in vitro, free dihydroflavins drive the adenosylation of cob(II)alamin bound to EutT. Results of chromatography analyses indicate that EutT is dimeric in solution, and unlike other ACATs, EutT catalyzes the r...

متن کامل

Purification and initial biochemical characterization of ATP:Cob(I)alamin adenosyltransferase (EutT) enzyme of Salmonella enterica.

ATP:cob(I)alamin adenosyltransferase (EutT) of Salmonella enterica was overproduced and enriched to approximately 70% homogeneity, and its basic kinetic parameters were determined. Abundant amounts of EutT protein were produced, but all of it remained insoluble. Soluble active EutT protein (approximately 70% homogeneous) was obtained after treatment with detergent. Under conditions in which cob...

متن کامل

Purification and Initial Biochemical Characterization of the ATP:Cob(I)alamin Adenosyltransferase(EutT) Enzyme of Salmonella enterica

The ATP:Co(I)balamin adenosyltransferase (EutT) enzyme of Salmonella enterica was overproduced, enriched to ~70% homogeneity, and its basic kinetic parameters were determined. Abundant amounts of EutT protein were produced, but all of it remained insoluble. Soluble, active EutT protein (~70% homogeneous) was obtained after treatment with detergent. Under conditions where Cbl was saturating, the...

متن کامل

Functional genomic, biochemical, and genetic characterization of the Salmonella pduO gene, an ATP:cob(I)alamin adenosyltransferase gene.

Salmonella enterica degrades 1,2-propanediol by a pathway dependent on coenzyme B12 (adenosylcobalamin [AdoCb1]). Previous studies showed that 1,2-propanediol utilization (pdu) genes include those for the conversion of inactive cobalamins, such as vitamin B12, to AdoCbl. However, the specific genes involved were not identified. Here we show that the pduO gene encodes a protein with ATP:cob(I)al...

متن کامل

The ATP:Co(I)rrinoid adenosyltransferase (CobA) enzyme of Salmonella enterica requires the 2'-OH group of ATP for function and yields inorganic triphosphate as its reaction byproduct.

The specificity of the ATP:corrinoid adenosyltransferase (CobA) enzyme of Salmonella enterica serovar Typhimurium LT2 for its nucleotide substrate was tested using ATP analogs and alternative nucleotide donors. The enzyme showed broad specificity for the nucleotide base and required the 2'-OH group of the ribosyl moiety of ATP for activity. (31)P NMR spectroscopy was used to identify inorganic ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 186 17  شماره 

صفحات  -

تاریخ انتشار 2004